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ABSTRACT
Optimizing memory cache usage is vital for performance of in-
memory data-parallel frameworks such as Spark. Current data-
analytic frameworks utilize the popular Least Recently Used (LRU)
policy, which does not take advantage of data dependency infor-
mation available in the application’s directed acyclic graph (DAG).
Recent research in dependency-aware caching, notably MemTune
and Least Reference Count (LRC), have made important improve-
ments to close this gap. But they do not fully leverage the DAG
structure, which imparts information such as the time-spatial dis-
tribution of data references across the workflow, to further improve
cache hit ratio and application runtime.

In this paper, we propose and develop a new cache management
policy,Most Reference Distance (MRD) that utilizes DAG information
to optimize both eviction and prefetching of data to improve cache
management. MRD takes into account the relative stage distance of
each data block reference in the application workflow, effectively
evicting the furthest and least likely data in the cache to be used,
while aggressively prefetching the nearest and most likely data that
will be needed, and in doing so, better overlapping computation
with I/O time. Our experiments with a Spark implementation, uti-
lizing popular benchmarking workloads show that, MRD has low
overhead and improves performance by an average of 53% com-
pared to LRU, and up to 68% and 45% when compared to MemTune
and LRC respectively. It works best for I/O-intensive workloads.
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1 INTRODUCTION
The emergence of data analytics frameworks [3, 10, 14, 16, 17, 19,
28], which rely on in-memory computing to speed up performance
and bypass the hindrance of disk and network I/O, has made the
cache management crucial. Even with the significant decrease in
the cost of memory over the years that provides an abundance of
RAM in modern clusters, the exponential growth of data size for
bigdata analytics make cache a precious resource and a bottleneck
often.

Caching is a long-established and well studied problem in var-
ious computing systems ranging from web servers to operating
systems. What differs, and makes data analytics frameworks dis-
tinct in this matter, is the availability of information on the data
dependency and access pattern before the execution of the applica-
tion. This data dependency is conveyed through the structure of the
directed acyclic graphs (DAG) [23], which is used to organize the
workflow of the application. In the popular data-parallel processing
framework Spark, this workflow is divided into jobs, stages and
tasks which can be exploited for job scheduling [6, 24] and data
caching.

Spark uses by default the popular but DAG-oblivious LRU caching
policy [13]. Previous studies, namely MemTune [25] and LRC [26]
have already made use of the DAG and its data dependency to
improve cache management. However, MemTune approach groups
Resilient Distributed Datasets (RDDs) into lists and does not suf-
ficiently discretize which and when each RDD will be needed in
the cache. For LRC, while it does assign values that differentiate
the weight for each data block to be in cache, it does not take
into account the impact of data blocks having large gaps in being
referenced during the workflow.

In this paper, we ask how the DAG can be further exploited to
improve cache management in Spark? More specifically, we look in
detail how the data dependency is organized along the workflow
of the application, and how a new metric reference distance, can
be used to predict when a data block is needed to be present in
the cache, be of low overhead, and be generally applicable to DAG-
based in-memory data analytics frameworks.

We propose and develop a novel cache eviction and prefetching
policy, Most Reference Distance (MRD), that always evicts the data
block whose reference distance is the largest, and prefetches the
data blocks whose reference distance is the smallest. Reference
distance is defined, for each data block, as the relative distance
between the current step in the application execution and the step
in the workflow that the data block is needed. The reference dis-
tance is initially calculated by parsing the DAG, and later while
the application is executed, the reference distance for each block is

https://doi.org/10.1145/3225058.3225087
https://doi.org/10.1145/3225058.3225087
https://doi.org/10.1145/3225058.3225087


ICPP 2018, August 13–16, 2018, Eugene, OR, USA TBG. Perez et al.

updated by simply decrementing the value based on the stage ID
that is currently executing.

The results based on the testbed implementation with fourteen
different benchmark data analytic workloads show that MRD per-
forms very well, but works best for I/O-intensive workloads. Com-
pared to Spark’s default LRU caching policy, it reduces application
runtime to as low as 20% of original and on average by 53%. MRD im-
proves system performance by up to 68% and 45% when compared
to MemTune and LRC, respectively.

The structure of this paper is as follows. Section 2 reviews related
work and limitations. Section 3 presents the motivation on our
work. Section 4 presents the architecture of MRD. Section 5 is on
the performance evaluation and discussion of findings and Section 6
concludes the paper and offers future research directions.

2 RELATEDWORK
Least Recently Used (LRU) [13] is a recency-based cache man-
agement policy, that keeps track of when each block of data was last
accessed, and evicts the one without access for the longest period
of time. It assumes that recently accessed data has a higher chance
of being needed in the near future. For most of in-memory data an-
alytics systems [10, 16, 19, 28], it is the de facto cache management
policy. However, it is oblivious to the data workflow information
provided by the DAG, resulting in inefficient and erroneous eviction
decisions as shown in the next section.

MemTune [25] dynamically adjusts parameters for memory
distribution in Spark. It evicts and prefetches using dependency
information from the DAG, but it restricts to local dependencies
on runnable tasks, and keeps information of all the required RDD
blocks in a series of lists that do not provide the fine-grained time-
locality information the DAG is able to provide. While the use
of DAG dependencies is an improvement over the oblivious LRU
policy, the level of specificity is too general and leaves significant
improvements to be made.

Least Reference Count (LRC) [26] traverses the DAG and its
dependencies and makes a count of the number of references to
each data block. As the application is run, LRC keeps track and
updates the count. The intuition being that data blocks that gets
referenced the most, are more likely to be needed than its peers, are
kept in the cache, and the lowest reference count gets evicted. Our
solution also makes use of memory references to data blocks in a
critical way. But we make the distinction that reference distance
provides a better metric in anticipating blocks that get referenced
sooner and those that are further in the future of a workflow, which
would keep the reference count high and mislead the necessity of
caching a particular block.

DAG-oblivious Caching policies. There are other recently
proposed caching systems that do not use DAG information and are
orthogonal to our work. Examples include Hyperbolic [5], which
utilizes random sampling and priority functions for eviction. Elastic
Memory [22] models memory usage and GC, while changing JVM
memory limits and reallocation between applications. V-Cache [8]
uses a genetic algorithm to allocate caching and machine learning
to dynamically resize the cache space. Miniature Simulation [21]
utilizes sampling and hashing to model caching behavior and allows

the simulation of multiple parameters in caching policies. Favor-
able Block First (FBF) [11] utilizes the relationships among parity
chains to hold the most significant data in buffer cache for partial
stripe reconstruction in disk arrays tolerating triple disk failures.
It is commonly used in cloud datacenters. MANGO [15] utilizes
predictive methods such as fuzzy logic and best-fit algorithms, for
memory management in heterogeneous NUMA shared memory
architectures with workloads of different priorities.

3 MOTIVATIONS
In this section, we give background information on how Spark’s
use of the DAG structure can provide insights into data access pat-
tern, how a new metric (reference distance) can be leveraged to
improve on the limitations of previous caching policies (LRU, LRC
and MemTune), and a motivating example that compares such poli-
cies in keeping in the cache the data to be most likely needed again.
Although the specifics of this paper are directed at the Spark [28]
framework, with some adaptations nothing prevents it from being
applicable to other data-parallel frameworks such as Storm [19],
Tachyon [10] and Tez [16].

3.1 Data Workflow in Spark
There are two fundamental concepts in understanding how Spark
deals with the flow of data when running an application. They are
Resilient Distributed Datasets (RDDs) [27] and Directed Acyclic
Graphs (DAGs). Whenever a user program is run, the sequence of
commands in the code are interpreted, and the creation of RDDs
and DAGs as a result represent the transformations, dependencies
and workflow between the input, intermediate data and output
of that program. This provides an overview of the data access
pattern during execution, which can be exploited for improving
cache management. An overall picture of RDDs and the DAG can
be seen in Figure 1, we briefly breakdown its various components.

Figure 1: Spark DAG structure, with jobs, stages and data
blockswith dependencies,measurements of stage (1st value)
and job distances (2nd value).

RDDs are Spark’s parallel data structure abstraction, which en-
capsulates not only the data, but also the transformations that form
its lineage, allowing for its reconstruction in case of failure. They
can be created from the original input data from a storage system
(e.g. HDFS [18], Tachyon [10] and Amazon S3 [2]) or computed
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Figure 2: Comparison of caching policies (LRU, LRC and MRD) for ConnectedComponents (CC) workload.

from a previous RDD. They are represented in Figure 1 by the let-
tered boxes (A-Z) and are partitioned into several blocks that are
distributed across the machines in the cluster. The lines connecting
the boxes show the data dependency among the RDDs, these can
cross the boundaries of stages and jobs.

The DAG, which is the overall workflow of the application, is
built from the RDDs’ dependancies. Whenever a user performs an
action on an RDD (e.g. RDD.count), this splits the user program
into jobs and triggers job execution. Whenever a user performs a
narrow transformation on an RDD (e.g. RDD.map()), each block of
a parent RDD gets transformed into the next child RDD, allowing
it to be pipelined and the data transformation stays within a stage.
Whenever a user performs a wide transformation on an RDD (e.g.
RDD.goupByKey()), it requires a shuffle from all the parent RDDs
into the next child RDD, causing a split between stages.

Hence having access to the DAG and its sequence of RDDs trans-
formations, allows for a semi-omniscient view of data access. In fact
the DAGScheduler component of Spark uses a depth-first search
to traverse the job DAG and select and submit runnable tasks (i.e.
for which all parent RDDs have already been computed) to the
TaskScheduler. However, we don’t have a fully-omniscient view
of data access. Since we don’t know exactly the order the tasks
are going to be run, we thus only approximate Belady’s MIN [4]
optimal caching policy.

3.2 Reference Distance
With the revelation of the data access workflow provided by the
DAG structure, which is easily retrieved from the DAGScheduler,
we devise a new metric which can leverage the time-locality in-
formation contained within. We call it reference distance. It is a
locality measurement in the sense that for each piece of data block
we are measuring the relative distance between the current point
in the DAG that the program is executing, and the next time that
data block will be referenced (i.e. when the parent RDD will be
accessed from memory or disk to create the next child RDD). It is a
time measurement, in the sense that even though we won’t know
precisely how long in seconds or minutes the reference will happen,
when a reference distance is compared to another, we can get a
sense of immediacy for the next data block access. This gives a high

level of predictability in guessing which data blocks are most likely
to be needed in the cache sooner.

For our work, we refer to two types of reference distances, they
are stage distance and job distance. Referring back to Figure 1 we
give examples for the measurement of both. The stage distance,
which is the first value on the bold lines of the figure, are measured
relative to Spark’s stages within a DAG. These are sequentially
numbered and contained in the variable StageID, making it easy
to simply subtract the current stage the application execution is,
from the stage on which a particular data block will need to be
accessed. The job distance, which is the second value on the bold
lines of the figure, is correspondingly relative to Spark’s jobs within
a DAG. These are similarly sequentially numbered and contained in
the variable JobID. As seen in Figure 1, block D can have both job
distance 5, and stage distance 10, although both reference distances
have good predictive capabilities, the finer grained stage distance
offers a better metric, as shown by experiments in Section 5.7.

3.3 Eviction Probability Across a Workflow
In Figure 2, we make a comparison of three caching policies (LRU,
LRC and MRD) behavior in the ConnectedComponents (CC) work-
load, and show how the probability of caching and eviction changes
as the workload is run. On the top of each graph we have the RDDs
that are cached by the application. On the left the JobID and StageID
shows points of reference for the application workflow. The num-
bers in bold with border outlines show when an RDD is referenced
(data dependencies) during the application run. The color varies
from green (most likely to be in cache) to yellow (most likely to
be evicted) for each particular policy. The numbers themselves
reflect the respective policies’ metric towards the data. For LRU
the value for each RDD is zero at creation and gets increased the
further away since its last reference, being reset to zero after each
reference (higher values get evicted). For LRC the value starts at
the maximum number of references and gets decreased after each
reference (lowest values get evicted). For MRD the values indicate
how many stages away from getting referenced, being reset to the
new distance after each reference. After there are no more refer-
ences, the value defaults to a maximum value, while the highest
values gets evicted.
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LRU does correctly maintain necessary data cached at several
moments, especially when it is reference often. But RDDs that have
gaps in their references suffer in favor of recently referenced ones.
In Figure 2 such is the case for RDD3 in stage 4, and RDD14 and
22 in stage 12 and so on, that get evicted in favor of maintaining
recently referenced data blocks that don’t have the same level of
urgency.

LRC improves upon LRU by keeping in cache the needed data
blocks more often, due to future references in the workflow RDD3
in stage 4 and RDD14 in stage 12 have a higher probability to escape
eviction. But, it still fails in cases like RDD 22 in stage 12, where its
single reference in the entire workflow places it at a disadvantage
to other RDDs that have future references, and as such keep a high
reference count, misleading the LRC policy in favoring its peers
and not RDD22.

MRD improves upon LRC by taking into consideration the ref-
erence distance for each data block. This resolves the issues en-
countered for both LRU and LRC described previously. Giving the
highest probability of keeping in cache those data blocks that will
be reference next, as can be seen in Figure 2. In the case of prefetch-
ing, MRD will bring to cache the data block with the lowest value
that is not in cache yet. Keep in mind that the exact data in cache
will depend on the size of the RDD’s data blocks and the size of
the cache available. As such, data blocks with the same reference
distance might not all fit the cache, a methodology to prioritize
which data block is cached in case of such ties are left for future
work.

4 SYSTEM DESIGN
In this section, we present the design of theMost Reference Distance
(MRD) cache management policy, which makes the cache eviction
and prefetching decisions based on the stage reference distance
extracted from the DAG, and its implementation in Spark.

4.1 Most Reference Distance (MRD)
We first define reference distance.

Definition 1 (Reference Distance). For each data block, the ref-
erence distance is define as the relative distance between the current
step in the application execution and the step in the workflow that the
data block has a dependent, utilizing a workflow-based subdivision
such as jobID or stageID.

The Most Reference Distance (MRD) policy will always evict the
data block whose reference distance is the largest, and prefetches
the data blocks whose reference distance is the smallest. Referring
back to Figure 1, block D can have both stage distances 1 and 10.
MRDwill keep track of the distance values for all the references, but
for comparison it will only use the lowest one. As the application
execution moves beyond a point where there is a reference, that
value is deleted, and the next lowest one is used. In case there are
no more distance values recorded, MRD assumes that the data block
is no longer referenced, and an infinite distance (negative value) is
used.

Reference distance allows for MRD to quickly detect and dispose
of inactive data with infinite distances, thus clearing space in the
cache. It allows for an easy way to compare data that will soon be
reference among its peers for prefetching, and avoids the inaccuracy

of maintaining data cached, that is still active, but will only be
needed much later in the application workflow, and hence have
large reference distances, making it second in line to inactive data
to be considered for eviction, and the last to be considered for
prefetching.

In our preliminary study, we considered two popular benchmark
suites, SparkBench [12] and HiBench [9] suites. But as seen in
Table 1, our preliminary study found that themeasured job distances
and stage distances for HiBench were much smaller due to the
nature of the workload or its particular implementation, and hence
offered less opportunities for MRD to exploit the DAG. HiBench
workloads were dropped from the final experiments.

Table 1: Reference distance characteristics of benchmark
workloads.

Workload
Average

Job
Distance

Maximum
Job

Distance

Average
Stage

Distance

Maximum
Stage

Distance

SparkBench Suite

K-Means (KM) 5.15 16 5.34 19
Linear Regression (LinR) 1.24 5 1.76 8
Logistic Regression (LogR) 1.53 6 2.00 9

SVM 1.48 6 1.96 10
Decision Tree (DT) 2.71 9 4.38 15

Matrix Factorization (MF) 1.56 7 3.31 18
Page Rank (PR) 1.74 5 6.08 19

Triangle Count (TC) 0.07 1 1.23 6
Shortest Paths (SP) 0.19 1 1.19 4

Label Propagation (LP) 7.19 22 28.37 85
SVD++ 3.51 11 6.82 23

ConnectedComponent (CC) 1.30 4 5.31 16
StronglyConnectedComponent (SCC) 7.77 24 29.96 90

PregelOperation (PO) 1.28 4 5.45 16

HiBench Suite

Sort 0.00 0 0.00 0
WordCount 0.00 0 0.00 0
TeraSort 0.22 1 0.22 1
PageRank 0.00 0 0.09 2
Bayes 2.09 7 3.23 9

K-Means 6.08 19 6.60 25

Ideally, to have an accurate value for every data block’s reference
distance, we need to view the entire application’s DAG. Unfortu-
nately in systems like Spark and Tez, the DAG is broken down in
parts and only available per job submission, hence applications
with several jobs will provide their information in fragments. This
leaves MRD with two modus operandi as follows.

First, since the study of production traces show that a high
percentage of workloads running in a cluster are recurring applica-
tions [7], meaning they are periodically re-run with just new data
as input, we save the DAG profile of the application from previous
runs, in essence storing the reference distance information for each
RDD.

Second, for the non-recurring applications, within a job with
several stages, it still is possible to compute a stage distance rel-
ative to data blocks reference within the same job. Data blocks
without references within the current jobs are assumed to have
infinite distances until a new job is submitted, and with the DAG
for the subsequent job, MRD can update the reference distances.
Obviously this approach is meaningless for job distances since they
will always be either infinite or zero, hence another reason why
stage distances are more fine-grained and preferred. We provide
performance comparisons of the two methods in Section 5.8.
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4.2 Implementation
Architecture overview. Figure 3 gives the overall architecture of
MRD where shaded components represent the major implementa-
tions. MRD has two main centralized components, AppProfiler
and MRDmanager, and a distributed component, CacheMonitor that
is implemented in each worker node. Most of the modifications to
Spark’s components were in: DAGScheduler, BlockManagerMas-
ter, BlockManagerMasterEndpoint, BlockManagerSlaveEnd-
point, BlockManager, and MemoryStore. The main APIs for the
MRD implementation can be seen on Table 2.

Figure 3: MRD system architecture.

AppProfiler component. Performs two tasks, for the first time
of a recurring application or a ad-hoc non-recurring application
is run it receives the job DAG from the DAGScheduler for parsing,
identifies and calculates the initial reference distance based on
the DAG and passes it to the MRDmanager, as the application is
executed and further job DAGs are received, the reference distance
is processed and passed on in a similar fashion, this in essence
creates an application profile that is stored in the AppProfiler for
future use. In the case of identifying a recurring application, the
AppProfiler instead can send the entire application DAG to the
MRDmanager.

MRDmanager component. Implements the main logic of the
MRD policy. It receives the initial and timely updates for the refer-
ence distances from the AppProfiler, but is the actual component
that will keep track of what stage the execution is and decrement
the reference distances as the application is run, maintaining and
updating the current distance profile. It also runs part of the MRD
eviction and prefetching algorithm that is explained in the next
subsection. Passes on the prefetching orders or gives the all-out-
purging eviction order in case an RDD is no longer needed for
the BlockManagerMaster to act upon across the cluster, and up-
dates the CacheMonitor in each node with the current reference

Table 2: Key APIs for Spark implementation.

API Description
parseDAG The AppProfiler parses the DAG informa-

tion received from the DAGScheduler and cre-
ates the reference distance profile for the job
or application

updateReferenceDistance The MRDmanager updates the reference dis-
tance profile with new values received from
the AppProfiler

newReferenceDistance The MRDmanager updates the reference dis-
tance values in the entire profile for each new
stage the application execution proceeds to

sendReferenceDistance The MRDmanager sends the required RDD
data block reference distances to each
CacheMonitor in the cluster

getReferenceDistance The CacheMonitor requests the reference dis-
tance profile for new RDD blocks from the
MRDmanager

reportCacheStatus CacheMonitor reports information like
memory availability, and hit ratios to the
MRDmanager periodically

evictBlock When the cache is full, the CacheMonitor
send the block to evict to BlockManager based
on the reference distance profile it has

prefetchBlock When there is space available, the
MRDmanager sends the block to prefetch
to the BlockManager

distance to make local decisions in case of memory pressure (such
as a prefetch) forces an eviction.

CacheMonitor component. Is deployed across the cluster, in
each worker node. It receives reference distance updates from the
MRDmanager for local eviction decisions, carries out the prefetching
orders given by MRDmanager and sends back information on hit
ratio and memory status information to the MRDmanager to make
prefetch decisions. This communication is made through the Block-
ManagerMasterEndpoint and BlockManagerSlaveEndpoint.

Setup workflow.When an application is submitted, Spark laun-
ches on the master node the Spark driver as well as a SparkContext
object. In turn, the SparkContext instantiates the AppProfiler
and MRDmanager components as well as the usual Spark compo-
nents: DAGScheduler, BlockManagerMaster and BlockManager-
MasterEndpoint. Next, the Spark driver launches across its worker
nodes in the cluster, the executor components, which includes our
CacheMonitor as well as the usual Spark components BlockMan-
ager and BlockManagerSlaveEndpoint.

Default workflow. When the application starts its run, the
cache has ample vacancy, and as new RDDs are created and its
data blocks are cached based on the user defined program, it will
eventually become full. At some point in the workflow, an already
created RDD is needed, in that case it will either use the already
cached data blocks, or fetch from its local disk or a remote node
the needed data blocks. If the cache does not have enough space,
it follows its default LRU caching policy and evict the longest idle
data block.

MRD eviction workflow. Overrides the default behavior in
two ways, first CacheMonitor will choose a data block that has the
greatest reference distance value to evict whenever it encounters
pressure to free up space, whether its the data blocks from a new
RDD being cached, or an already existing RDD being prefetched.
Second, from time to time, when MRDmanager detects that an RDD
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Algorithm 1 MRD eviction and prefetching.
1: Input: N, S, free_memory, threshold
2: /*Initial Phase*/
3: for each job j of J do
4: MRD_Table ← reference distances from DAG
5: for each node n of N do
6: send(MRD_Table)
7: end for
8: end for
9: for each stage s of S do
10: update(MRD_Table)
11: end for
12: /*Eviction Phase*/
13: if data block di < 0 AND di ⊂ MRD_Table then
14: for each node n of N do
15: evict(di )
16: end for
17: end if
18: while new data block sizeof(dn ) > free_memory do
19: de ← highest(MRD_Table)
20: evict(de )
21: end while
22: cache(dn )
23: /*Prefetching Phase*/
24: for each node n of N do
25: dp ← lowest(MRD_Table)
26: if sizeof(dp ) < free_memory OR free_memory > threshold then
27: prefetch(dp )
28: end if
29: end for

is no longer needed (all of its data blocks have reference distance
to infinite), a cluster wide purge order is sent to all CacheMoni-
tors, preemptively evicting and freeing up cache space, instead of
waiting for memory pressure to set it off. This aggressive behavior
allows the cache to free space more frequently instead of only doing
eviction when there isn’t enough memory for the next block.

MRD prefetching workflow. Overrides the default behavior
by MRDmanager preemptively fetching data blocks that have the
lowest reference distance (i.e. most likely to be needed next) when
a certain threshold of memory is free (which might cause memory
pressure to evict the largest reference distance block as described
above), or if the next data block fits into the current memory if the
threshold has not been met. This aggressive behavior allows the
most needed blocks to be placed in memory earlier, overlapping
the stalling time of I/O with computation.

4.3 Eviction and Prefetching
The pseudocode for the eviction and prefetching algorithm in MRD
can be seen in Algorithm 1. Parts of it run in the centralized MRDman-
ager component, while others execute in the distributed CacheMon-
itor.

Initial phase workflow. Lines 3 to 11, MRDmanager adds the
new reference distances to the MRD_Table on a per job basis in
case of ad-hoc applications, and updates the values in case of a
discrepancy for recurring applications, then the various work nodes
in the cluster are updated. Also, for each stage that is processed,
the MRD_Table is updated with the new distance at the master and
nodes, usually a decrement of one for each distance, unless some
stages are skipped, regardless the appropriate value is calculated
based on the StageID.

Eviction phase workflow. Lines 13 to 22, MRD performs evic-
tions in two instances. First, for the MRDmanager in case there exists
a data block with infinite reference distance (negative value), and is
contained in the MRD_Table, it will evict that particular block from
every worker node in the cluster. Second, for the CacheMonitors
in case a new block is being allocated space in the cache, and the
size of that block is greater then the available space, then the data
blocks with the highest reference distance values are evicted until
there is enough space available to cache the new block.

Prefetching phase workflow. Lines 24 to 29, MRDmanager per-
forms prefetching by selecting the data block with the lowest (non-
negative) value in the MRD_Table, and respecting data locality,
checks for each worker node if the data block would fit in memory
(a certain prefetch), or if there is sufficient memory available to
force a prefetch (also forcing an eviction by the CacheMonitor).
The threshold value is set experimentally at 25% of the cache space.

4.4 Overheads and Fault Tolerance
Storage and computation overhead.MRD book-keeping is rela-
tively small and comparable to the LRU (default) caching policy. The
largest MRD_Table, measured in KBs contained less then 300 refer-
ences. In terms of computations, only a small sorting is necessary
among the few references, and leads to undetectable differences in
CPU processing.

Communication overhead. In order to keep the communica-
tion overhead to a minimum, each CacheMonitor worker node
has a copy of the reference distance profile, and can request and
receive updates as necessary from the MRDmanager. These occur in
the case a new job DAG is processed for ad-hoc applications, or a
discrepancy in the application DAG is detected. Also, from time
to time, as an RDD reference distance reaches infinity, the all-out
purge eviction order is triggered by the MRDmanager.

Prefetching overhead. Although we acknowledge that there
is a possibility of encountering a big enough data block, whose
size would take up almost the entire worker node cache, and hence
the prefetching would cause the eviction of other data blocks with
lower reference distances. Such cases would be counter productive,
and lead to performance degradation, but we believe this is a rare
case. Improvements where the soon to be pre-fetched data block
reference distance is checked against the currently cached blocks
are left for future work, but we believe the overhead of having to
do a pre-check for every pre-fetching outweighs the benefits of our
aggressive pre-fetching policy.

Fault tolerance. In the event of worker node failures, and the
loss of local reference distance profiles, the MRDmanager re-issues a
copy of theMRD_Table to the new nodes. For recurring applications
that might have not completed in their first run, the AppProfiler
resumes the creation of reference distance profile with subsequent
runs, in the same fashion that it checks for discrepancies during
future runs.

5 EVALUATION
In this section, we demonstrate the efficacy of MRD with fourteen
different workloads in three cluster settings. We first provide the
overall best performance acquired when compared to the default
LRU cache policy, then compare specific workloads to the results of
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Table 3: SparkBench benchmark characteristics.

Workload Category
Data
Input
Size

Total
Stage
Inputs

Total
Shuffle
R/W

Characteristics
Jobs/Stages/Active Stages/RDDs/

References per RDD/References per Stage

Job
Type

K-Means (KM) Machine Learning 5.5 G 59.3 G 64.5K/64.5K 17 / 20 / 20 / 37 / 5.57 / 1.95 Mixed
Linear Regression (LinR) Other Workloads 7.7 G 35.8 G 19.8K/19.8K 6 / 9 / 9 / 24 / 5.00 / 0.56 CPU intensive
Logistic Regression (LogR) Machine Learning 11.1 G 42.7 G 59.1K/59.1K 7 / 10 / 10 / 25 / 6.00 / 0.60 CPU intensive

SVM Machine Learning 3.8 G 19.1 G 3.2G/3.1G 10 / 28 / 17 / 40 / 3.50 / 0.41 CPU intensive
Decision Tree (DT) Other Workloads 3.5 G 30.4 G 5.3M/5.3M 10 / 16 / 16 / 29 / 4.00 / 0.25 CPU intensive

Matrix Factorization (MF) Machine Learning 1.1 G 9.4 G 1.9G/1.9G 8 / 64 / 22 / 103 / 3.11 / 1.27 Mixed
Page Rank (PR) Web Search 934 M 12.7 G 121M/118M 7 / 69 / 21 / 95 / 2.27 / 2.38 I/O intensive

Triangle Count (TC) Graph Computation 268 M 3.7G 9.4G/9.2G 2 / 11 / 11 / 74 / 0.80 / 0.73 Mixed
Shortest Paths (SP) Other Workloads 2.9 G 9.6G 125M/125M 3 / 8 / 7 / 34 / 1.33 / 1.14 Mixed

Label Propagation (LP) Other Workloads 1.3 M 333M 6.2M/3M 23 / 858 / 87 / 377 / 4.09 / 3.06 I/O intensive
SVD++ Graph Computation 453 M 22.9G 9.4G/9.4G 14 / 103 / 27 / 105 / 3.32 / 2.33 I/O intensive

ConnectedComponent (CC) Other Workloads 2.4 G 17.2G 0.7G/0.6G 6 / 50 / 19 / 85 / 2.87 / 2.26 I/O intensive
StronglyConnectedComponent (SCC) Other Workloads 81 M 6.2G 121.3M/113.7M 26 / 839 / 93 / 560 / 4.22 / 3.54 I/O intensive

PregelOperation (PO) Other Workloads 1.4 G 38.4G 0.8G/0.8G 17 / 467 / 65 / 283 / 3.55 / 3.25 I/O intensive

two previously published caching management solutions. Then we
perform specific testing to show the behavior of MRD under several
scenarios, such as different cache sizes, use of job distance instead
of stage distance, ad-hoc versus recurring runs and the impact of
varying the number of iterations of a workload.

5.1 Workloads
For this researchwe use thewidely known and used SparkBench [12]
suite. To test MRD performance, we adopt a mix of machine learn-
ing, graph computation and other types of applications for a total of
fourteen SparkBench workloads. They are representative of many
data analytics jobs and offer a good variety of different properties.
The characteristics of each workload are given in Table 3.

5.2 Cluster Configurations
Our testbed was composed of various virtualized machine con-
figurations, always with one as master and the rest slaves, with
the specifics given on Table 4. Our main set of tests were exe-
cuted in our university virtual environment with 25-nodes. We
also configured our cluster settings to emulate two different envi-
ronments. A 20-node AmazonEC2 [1] m4.large for a comparison
to the LRC work and the 6-node System G [20] for a compari-
son to the MemTune work. The rest of the configuration for each
machine is the same with 200GB of disk space, running Linux
Ubuntu 15.10, with Spark 2.0.0 standalone mode, and the underlying
HDFS [18] with Hadoop 2.6.4 with block size of 128MB. When re-
quired by our experiments we altered the spark.memory.fraction
and spark.executor.memory parameters of Spark to simulate dif-
ferent cache sizes, otherwise default parameters are used.

Table 4: Cluster environments.

Cluster Setup VMs vCPU RAM Network Equivalency

Main cluster 25 4 8 GB 500 Mbps N/a

LRC cluster 20 2 8 GB 450 Mbps Amazon EC2
m4.large

MemTune cluster 6 8 8 GB 1 Gbps System G

5.3 Overall Performance of MRD
In our Main cluster we executed each workload with several cache
sizes and averaged out the results out of 20 runs, the results for

the best overall performance gain for each workload-cache com-
bination is shown on Figure 4, compared to the normalized Job
Completion Time (JCT) of the default LRU in Spark. We show the
results for three different scenarios: MRD with eviction-only, MRD
with prefetch-only and MRD with both eviction and prefetching
enabled. In general MRD performs very well, with significant de-
creases in application runtime and increase in cache hit ratio.

Figure 4: MRD best performance out of several cache sizes.

Eviction-only Results. The application runtime values were
reduced on average to 62% of the original JCT. The values reached
as low as 25% for the StronglyConnectedComponent (SCC) work-
load, and as high as 100% (in other word, having no effect) for the
DecisionTree (DT) workload. Showing that in general the eviction
policy provides the bulk of the improvement for MRD.

Prefetch-only Results. The application runtime values were
reduced on average to 67% of the original JCT. The values reached as
low as 40% for the StronglyConnectedComponent (SCC) workload,
and as high as high as 88% for SVM and DecisionTree (DT). Showing
that while the aggressive prefetching on average is less effective, it
had better results then pure eviction for some workloads.

Full MRD Results. The application runtime values were re-
duced on average to 53% of the original JCT. The values reached as
low as 20% for the StronglyConnectedComponent (SCC) workload,
and as high as high as 88% for DecisionTree (DT). Our best results
have come from workloads that are I/O intensive, but we also be-
lieve is due to its characteristics of having both high values for both
stage reference distance and average references per stage, giving
MRD many opportunities to evict the least required data blocks.

Cache hit ratio. For readability we only show the cache hit
ratio for LRU and the full implementation of MRD, as is expected,
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the hit ratio for all workloads have increased, showing that MRD is
a better predictor of needed data blocks then the default LRU. The
effects on performance vary as there is no linear relationship be-
tween the increases of hit ratio and performance, where workload
characteristics such as RDD sizes and network I/O come into play.
Not all workloads achieve a 100% cache hit ratio, for some experi-
ments the cache available is not able to accommodate pre-fetching
of the most needed data block.

5.4 Comparison to LRC
We conducted further tests in our LRC cluster to compare results
of LRC [26] to the MRD policy. To make the comparison as fair
as possible, we emulate their environment and match workload
characteristics. Taking the best values from their experiments and
ours, we can see in Figure 5 that MRD improves performance up
to 45% for ConnectedComponents (CC), but also that overall, the
results forMRDwere better by an average of 30%. This is in line with
expected results as reference distances provides a better prediction
metric then reference count, and avoids the pitfall of RDDs that
remain in cache due to high count values, but only get referenced
further in the future.

Figure 5: Comparison to LRC policy.

5.5 Comparison to MemTune
We conducted further tests in our MemTune cluster to compare re-
sults of MemTune [25] to the MRD policy. To make the comparison
as fair as possible, we emulate their environment and match work-
load characteristics. Taking the best values from their experiments
and ours, we can see in Figure 6 that MRD improves performance
up to 68% for PageRank (PR), but also that overall, the results for
MRD were better by an average of 33%. This shows that MRD is
able to capture with a finer granularity the details from the DAG
in order to predict which data blocks are needed. Only LogisticRe-
gression (LogR) shows a slight disadvantage in performance, this is
in line with workloads that have low values for reference distances,
where MRD is not fully capable of improving cache performance.

5.6 Impact of Different Cache Sizes
On previous experiments, we displayed the best results for each
workload, in Figure 7 we provide more details on the effects of
cache size in the performance of MRD in the LRC cluster for the
SVD++ workload, with further comparisons to the LRC policy. As
is expected, the smaller the cache size, the lower the cache hit

Figure 6: Comparison to MemTune policy.

ratio and longer the application runtime. However, regardless of
the cache size, MRD policy outperforms both the LRU and LRC
policies.

In a similar fashion to LRC, MRD also has the added benefits
of cache space savings. With a much smaller cache size, MRD is
able to match the hit ratio of LRU. For example, to achieve a target
hit ratio of 68% for SVD++, LRU requires 0.88 GB of cache space.
In comparison, MRD requires only 0.33 GB, the equivalent of 63%
savings in cache space. Other workloads present similar cache space
savings. This is significant as it leads to resource and cost savings.

Figure 7: Effects of cache size on hit ratio and runtime, with
3 policies for the SVD++ workload.

5.7 Impact of Stage Distance vs. Job Distance
As described in Section 3.2, our use of reference distance had two
possible metrics, job distance and stage distance. Intuitively and
confirmed through testing, stage distance provides a better and
more fine-grained metric for the MRD policy. In this experiment we
show in more detail the impact of using the job distance. In Figure 8
we can see how the use of job distance significantly degrades both
the performance and cache hit ratio of LabelPropagation (LP) which
has a large ratio (3.17) of active stages (87) to jobs (23). Since all the
references within the same job are treated as equals for job distance,
the predictive power of MRD is significantly diminished when a job
contains several stages and references, by splitting the workflow
in a finer-grained stage distance this problem is overcome. While
for K-Means (KM) which has a low ratio (1.18) of active stages (20)
to jobs (17), the metric used has almost no discernible difference
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in terms of hit ratio and performance, since in this case stages and
jobs are almost equivalent.

Figure 8: Effects of reference distance metrics.

5.8 Impact of Ad-Hoc vs. Recurring Runs
As described in Section 4.1, our solution deals with limitations in
viewing the entire application DAG in two ways. For first-runs
and ad-hoc applications, it will build the reference distance profile
one-job-at-a-time, for recurring applications that have already been
profiled, MRD benefits from seeing the entire application DAG from
the start of the run. In this experiment we show in more detail the
impact of having the entire DAG on performance and cache hit
ratio in Figure 9. For K-Means (KM) where the application is broken
down into 17 jobs and has on average 5.57 references per RDD along
the entire workflow, the lack of an application-wide DAG view is
detrimental. This is because, on the lack of better information,
MRD will assume that reference distances to be infinite across job
boundaries, hence RDDs with future reference will erroneously be
considered good candidates for eviction and poor candidates for
prefetching. While for TriangleCount (TC) which has only 2 jobs,
and on average 0.8 references per RDD along the entire workflow,
the results show that the impacts on performance and cache hit
ratio are indiscernible. Particularly in this case, the overall low
performance of TriangleCount (TC) with recurring runs is due to its
workload characteristic of low average references per RDD, which
limits the significance of improving performance with evictions
and prefetching.

Figure 9: Effects of DAG information availability.

5.9 Impact of Iterations in Workloads
All previous experiments were conducted with the default configu-
rations of SparkBench, however one particular workload parameter
of interest to the MRD policy regards the number of iterations. This
is important, since increasing iterations, there is a tradeoff between
increasing the accuracy of the solution the workload is calculating,
with an increase in the time it takes for the application to com-
plete its run. This is an option that the application’s user might be

willing, or even need to make. From the MRD policy standpoint,
the significance is that the increase in iterations usually implies
in the increase in number of jobs, stages and cache references an
application makes. As a consequence, MRD is able to better lever-
age evictions and prefetches, and improves the cache hit ratio and
performance.

For this experiment we tripled the number of iterations of the
workloads that possessed the parameter, on average the number
of jobs increased by 59% and the number of stages by 78%, one
noticeable mention is the DecisionTree (DT) workload, where there
was no impact on either. As can be seen in Figure 10, there is an
improvement in performance, decreasing the average JCT from
62% to 54% and increasing the hit ratio from 94% to 96%. However,
the effects are not the same across all workloads, and do not scale
by simply increasing the number of iterations indefinitely. This
is because the increase in jobs and stages is not equal across the
workflow, affecting only a part of the application. As such, increas-
ing the number of iterations suffers from the effects of diminishing
returns.

Figure 10: Effects of iterations in workload.

5.10 Comparisons and Discussions
When analyzing the series of experimental results, we find out that
three workload characteristics have significant affect on the per-
formance and cache hit ratio for the MRD policy. These workloads
are I/O-intensive, high stage distance and high reference per stage
workloads.

I/O-intensive workloads. Workloads such as: PageRank, SVD
++, ConnectedComponents (CC) and PregelOperation (PO) are all
I/O intensive. By properly caching the most needed data blocks,
allows the MRD caching policy the best possibilities to overlap
network and disk I/O with computation time, and hence achieve sig-
nificant performance improvements over the default LRU caching
policy.

High stage distance workloads. Figure 11 plots the perfor-
mance of the various workloads against their average stage dis-
tances. We observe that there is a tendency of low stage distance
workloads such as SVM achieving low reductions in their JCTs,
while high stage distance workloads such as LabelPropagation (LP)
have significant improvements to their JCTs. This is because higher
average stage distances implies bigger gaps between each refer-
ence to an RDD, with such gaps occurring frequently throughout a
workload, it allows the MRD policy to perform various evictions
and prefetches that improve cache hit ratio and performance.
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High reference per stage workloads. Figure 12 plots the per-
formance of the various workloads against their average references
per stage. We observe there is a tendency of low reference per stage
workloads such as TriangleCount (TC) achieving low reductions
in their JCTs, while high references per stage workloads such as
K-Means (KM) have significant improvements to their JCTs. This is
because higher average references per stage implies more competi-
tion between data blocks to occupy the limited cache space, with
such bottlenecks occurring frequently throughout a workload, it
becomes more critical to evict the proper idle data block in favor of
a needed one, it allows the MRD policy to improve on the cache hit
ratio and thus performance.

Figure 11: Relationship of performance and stage distance,
with trendline of R2=0.46.

Figure 12: Relationship of performance and average refer-
ences per stage, with trendline of R2=0.71.

6 CONCLUSION & FUTUREWORK
In this paper, we design a reference-distance based cache manage-
ment policy, Most Reference Distance (MRD), which evicts and
prefetches data blocks with the greatest and smallest reference
distance respectively. Reference distance is measured as the stage
distance of the current stage to the stage a data block is referenced.
We implemented MRD on Spark. Where experimental results show
a reduction in the application runtime to as low as 20% of the origi-
nal value when compared to Spark’s default LRU and on average by
53%. It outperformed previous work, improving performance by up
to 68% and 45% when compared to MemTune and LRC respectively.
It works best for workloads characterized as I/O-intensive, and
workloads that have high stage distance and high reference per
stage values.

Our future work includes expanding MRD to other frameworks,
testing with more benchmarks, cluster configurations and modify-
ing the prefetchingmemory threshold to be dynamic and automated.
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